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Abstract—In CAD, constraint solvers allow a user to describe a
figure or an object with a set of constraints like distances, angles,
tangencies, incidences and so on. Geometric solvers proceed in
two stages. First, a symbolic construction plan is provided from
the set of constraints. Then, the dimensions of constraints are
used in a numerical stage to evaluate the construction plan.

However, construction plans can not be easily provided for
many problems in 3D. A classic idea consists in removing and
adding some constraints in order to make the problem solvable by
a geometric method. This leads to a numerical problem in which
numerical values for the added constraints have to be computed
in order to find the values of the added dimensions that validate
the removed dimensions. Finding these values is usually done by
sampling which is very time-consuming when there are more than
2 variables to sample. In this paper we address the numerical
stage by adapting a path-tracking method. This allows to find
several solutions and this method is efficient when the number
of values is greater than 2.

I. INTRODUCTION

Geometrical constraint solving is used in many fields such
as CAD, robotics and molecular modeling. The aim is to find
coordinates of entities such as points, lines, circles, spheres
and planes subject to some constraints involving for instance
distances, angles, tangencies, incidences. Usually geometrical
constraint systems (GCS) are well-constrained in the sense
that there exists a finite number of solutions. In CAD, the
constraints are provided by the user under the form of a
dimensioned sketch. As the number of solutions can grow
exponentially, the sketch is sometimes used for capturing the
user’s intent and to propose only solutions close to the sketch.

Different approaches can be used to address the issue of
finding solutions of a GCS. There are the symbolic algebraic
approach [1], [2], the numerical approach [3], [4], [5], the
geometrical approach which was performed with rule-based
systems [6], [7], [8], [9] or graph analysis [10], [11], [12],
[13].

In CAD, a GCS often contains dozens of primitives. A
divide and conquer strategy is used to decompose the problem
into sub-problems [14], [15], [16], [17], [18]. There are several
reasons to do that. First, sub-problems can be solved by
different methods suited to the involved constraints. Next,
usual solving methods are implemented by polynomial time
algorithms with order three or four. With sub-problems con-
taining less than 20 primitives, this complexity is no more
prohibitive. Finally, a method that fails to solve the whole
problem can manage to offer solutions for the sub-systems.

It is often the case with geometrical methods. In this article,
we will not discuss aspects of decomposition. The aim is to
describe a solving method that can also be used as a method
for solving sub-problems.

The locus intersection method (LIM) is a fast geometric
method that performs two stages : first a symbolic construction
plan is provided, then numerical dimensions given by a user
are taken into account and the construction plan is evaluated to
give numerical solutions. LIM provides all the solutions with
quadratic time complexity. Nevertheless, only few problems
can be solved with this method, especially in 3D.

An idea taken up by [19] is to remove some constraints
and to add new ones in order to make the problem solvable
by LIM. The new constraints, that correspond to distances
or angles, are driving parameters and a numerical stage
seeks for values of driving parameters to meet the removed
constraints. We call reparametrization this way of switching
constraints by others. In [19], it is assumed that the problem
is decomposed into basic configurations involving up to 6
primitives. All possible basic configurations are solved by
reparametrization with a maximum of two driving parameters.
With up to two parameters, a numerical solving that samples
ranges could be sufficient. In this paper we do not make this
assumption and systems can be reparameterized with more
than two parameters. Thus, the numerical phase can be very
time consuming. If a reparametrization leads to remove and
add n constraints, then the numerical solving will have to find
points in a n-box. [20] adapts the Newton method to work with
LIM but this method encounters difficulties in controlling the
passage from a solution to another. So, we propose here to
use a method of path-tracking that is adapted for symbolic
geometric solutions.

The paper is structured as follows. Section II gives some
definitions about geometric constraint systems. Section III
presents the symbolic part of the solving while section IV
shows the numerical solver that performs paths tracking.
Section V concludes.

II. GEOMETRICAL CONSTRAINT SYSTEMS AND
CONSTRUCTIONS

A. GCS

A Geometrical Constraint System (GCS) is a triple (C, X ,
A) where C is a set of constraints, X a set of unknowns, and
A a set of parameters. A constraint can be seen as a first-order
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Fig. 1. Graphical representation of : a) a GCS, b) a construction plan

logic term based on the set of variables X∪A. We will denote
by unk(C) the set of unknowns of constraints in C. Terms are
built over a many-sorted signature. A signature for 2D GCS
could be:

Signature
Sorts

Length, Angle, Point, Line, Circle
Functions

distance : Point Point → Length
angle : Line Line → Angle
bisector : Line Line → Line
intersection cl : Circle Line → Point
...

Relations
on line : Point Line
on circle : Point Circle
radius of : Point Circle
tangency : Circle Line Point
...

Figure 1a is a graphical representation of a simple problem.
With the previous signature, the corresponding GCS is :

C = { distance(p0, p1) = k, angle(l1, l2) = a,
on line(p0, l0), on line(p1, l0),
on line(p0, l1), on line(p2, l1),
tangency(c0, l0, p1), tangency(c0, l1, p2)
radius of(p3, c0) }

X = { p0, p1, p2, p3, l0, l1, c0 }
A = { k, a }

With the 2D Euclidean classical interpretation, (where usual
functions and relations are assigned to symbols and where
variables are elements of Rn) figure 1a is also a graphic
representation for a model of the previous GCS. A solution
is a variable assignment that makes valid the constraints
over the interpretation. In CAD, terms and variables are
usually interpreted in 2D or 3D space with real values for
coordinates. We make this assumption in the following. Notice
that in dynamic geometry, it could be useful to consider
other interpretations with complex or projective spaces [21].
In CAD, unknowns usually correspond to geometric entities
and parameters correspond to dimensions (lengths, angles).

For a specific assignment of parameters, a GCS is said
to be well-constrained if the set of all possible solutions is
finite. It is over-constrained if there is no solution and under-
constrained otherwise. In example of figure 1a, some values
for parameters lead to an infinite set of solutions since each
solution can be placed elsewhere in the euclidean plane. So in

CAD, well/under/over-constrained has to be understood apart
from rigid motions. In algebraic terms, the number of solutions
is the number of orbits under the action of rigid motions group
[18]. In example 1a, whatever the assignment for parameters,
there is only one solution (one orbit) so the GCS is well-
constrained as there is a finite number of orbits.

For any assignment, a GCS is said to be generically well-
constrained if it is well-constrained for all possible assign-
ments for parameters except for some specific ones that
correspond to degenerate cases. The same goes to under and
over constrained GCS. For instance, 4 points with 6 distances
is generically over-constrained but there exists some values for
the distances that give solutions. For these values the problem
is then well-constrained.

Apart from specific frameworks like rigidity theory, de-
termining whether a GCS is generically well-constrained is
an undecidable problem. So in CAD, the weaker notion of
structurally well-constrained is used. Intuitively, a system is
structurally well-constrained if the system contains enough
constraints for the number of unknowns and no part of the
system is over-constrained. In 2D, a GCS is structurally well-
constrained if it meets the characteristic of Laman [22]. Given
an entity e (point, line, circle, etc.), dof(e) will denote the
degree of freedom i.e. the number of coordinates. For a
constraint c, dor(c) will denote the degree of restriction of the
constraint. It corresponds to the number of degrees of freedom
the constraint removed. For a GCS interpreted in 2D, if we
have ∑

x∈X

dof(x)−
∑
c∈C

dor(c) = 3

and if for all subsets X ′ of X∑
x∈X′

dof(x)−
∑
c∈C

dor(c) ≥ 3

then the GCS fulfills the characteristic of Laman and is
structurally well-constrained. The constant 3 in these relations
correspond to the number of degrees of freedom that have to
be removed in order to choose a specific solution. In practice,
in 2D, a point and the slope of an incident line are fixed. The
Laman characteristic was not extended in 3D (see the famous
counter example of the double banana [23]). And in CAD we
simply impose the relationship∑

p∈P

dof(p)−
∑
c∈C

dor(c) =

(
d+ 1

2

)
with d the dimension of space.

B. Construction plan

A construction plan is a list of terms where the i-th element
has the form xi = f(x1, ..., xi−1). It expresses the symbolic
solution of a GCS. For the previous GCS, a construction plan
can be :
p0 = fix point(0, 0)
l0 = fix line(p0, 0)
c1 = new circle(p0, k)
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Fig. 2. Evaluation tree of a construction plan

p1 = intersection cp(c1, l0)
l2 = perpendicular(l0, p1)
l1 = angle lp(l0, p0)
l3 = bisector(l0, l1)
p3 = intersection ll(l2, l3)
...

This piece of construction is illustrated figure 1b.
A geometrical solver provides a construction plan from a

GCS. It can be implemented as a knowledge-based system
where knowledge are rules of geometric construction. Once
a construction plan is available, it is evaluated by replacing
the parameters with numerical values defined by the user.
The evaluation leads to a tree in which the number of leaves
correspond to the number of solutions. Each branch from the
root to a leaf represents a solution. Figure 2 shows the first
levels of the tree for the plan above assuming that values
for parameters do not correspond to a degenerate case (no
intersection or congruent entities). This tree contains two
leaves corresponding to two symmetric solutions. They come
from the intersection of c1 and l0 that gives two solutions for
p1.

III. LOCUS INTERSECTION METHOD AND
REPARAMETRIZATION

A. Locus Intersection Method

The symbolic phase consists in moving from a set of terms
describing a statement to a set of terms corresponding to a
construction plan. With knowledge-based systems, this phase
is based on a set of symbolic construction rules given by an
expert.

The time complexity of geometrical solvers implementing
knowledge-based systems is O(n3) or O(n4). But there exists
a simple implementation of a geometrical solver that has a
quadratic complexity.

The loci intersection method (called LIM as in [19] that
gives a variant of the following algorithm) consists in trans-
lating constraints into loci. For instance, if there is a distance
between two points k = distance(p1, p2), then point p2 is on
a circle with p1 as center and k as radius. If a circle is tangent
to a line and to another circle, then its center is on a parabola.
The entities (unknowns) are then defined by intersections of
loci.

In 2D, the algorithm proceeds in the following way.
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Fig. 3. Classical problem that LIM can not solve
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Fig. 4. K3,3 : 2d problem with 6 points pi and 9 distances kj

Algorithm LIM
Step 1 : all entities are tagged as non constructed
Step 2 : a point and an incident line are tagged as constructed
Step 3 : choose an entity x tagged as non constructed, build
the set C of constraints such as x appears in each constraint
of C and entities of unk(C) − {x} are constructed. If∑

c∈C dor(c) = dof(x) then tag x as constructed. Actually, x
can be determined by intersections of loci of constraints in
C.
Step 4 : repeat step 3 until no more entities can be tagged.

If all entities are tagged, the solving is successful. Notice
that the success of this algorithm could depend on the choice
of fixed entities at step 2.

In step 3, this algorithm uses a rule of construction that
translates a symbolic constraint in a set of terms that come to
the current construction plan.

Many CAD problems are solved by decomposition of the
constraint system into subsystems [17]. This loci method can
solve most of the usual subsystems. Nevertheless, some small
GCS are not resolved by this method. Figure 3a shows a GCS
involving 4 distances and 1 angle constraints. A geometrical
construction is outlined figure 3b. A knowledge-based system
could provide a construction plan for this problem. However
LIM can not successfully deal with this problem. After fixing
point p1 and slope of l0, p2 is constructed and the process
can not continue.

There is no known combinatorial characterization of solv-
able constraint systems by LIM. Although rather limited, this
method is interesting because it can easily be adapted to solve
more problems and even problems not solvable geometrically
such as the one shown in figure 4 and known as K3,3. In this
figure, straight lines mean distance constraints.



B. Reparametrization

The reparametrization algorithm (called REPARAM) forces
the GCS to be solvable with LIM. Whenever an entity does
not share enough constraints with constructed entities, new
constraints are added. Assuming that the GCS is structurally
well-constrained, these new constraints make some entities
over-constrained. So, during the process, some constraints
are removed. For the sake of simplicity and without loss of
generality, we consider that dor(c) = 1 for any constraint c.
The reparametrization algorithm performs this way :

Algorithm REPARAM
Step 1 : Let A = ∅, the set of new functional constraints

let R = ∅, the set of removed functional constraints
Step 2 : all entities are tagged as non constructed
Step 3 : a point and an incident line are tagged as constructed
Step 4 : for an entity x tagged as non constructed, build the

set C of contraints such as x appears in each
constraint of C and entities of unk(C)− {x} are
constructed. Choose x such as
diff =

∑
c∈C dor(c)− dof(x) is minimum.

if diff < 0 A = A ∪ NewConstraint(unk(C), x)
if diff > 0

R = R − ChooseConstraintToRemove(C)
tag x as constructed.

Step 5 : repeat step 4 until no more entities can be tagged.

Algorithm NewConstraint(X , x) builds one new con-
straint involving x and elements of X . It must be a functional
constraint (not incidence or tangency). It is either a distance
constraint or an angle constraint according to the type of
entities. If x is a line and X only contains one point, the new
constraint will be point-line distance. These new dimensions,
distance or angle, are driving parameters.

With the previous K3,3 example, the algorithm proceeds as
shown in figure 5. After constructing points p0 and p1, points
p2 and p5 are linked to constructed points but one constraint
is missing to define them. A constraint k9 = distance(p0, p2)
is added with k9 the driving parameter. Now, diff for points
p5 is 0 and it can be constructed. Next, point p4 is tagged. For
point 3, diff = 3−2, so one constraint must be removed. Pro-
cedure ChooseConstraintToRemove chooses arbitrarily
the distance p4p3. The construction plan contains line-circle
intersection for p1 and circle-circle intersections for points
p2, p3, p4 and p5. So, the evaluation tree can have up to 32
branches. Finally all numerical values for k9 making constraint
k3 = distance(p3, p4) true, have to be found.

In this example, let S be a numerical solution for a particular
assignment of k1, ..., k8. Let v9 be the value taken by k9
by reading distance p0p2 in S, then the interpretation of the
construction plan yielded by REPARAM corresponding to this
assignment for k1, k2, k4 . . . k8, and v9 for k9 leads to a tree
containing at least one branch corresponding to S. The other
branches are not necessarily other solutions. And so is for all
solutions of this system. Thus, the construction plan potentially
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Fig. 5. Algorithm REPARAM on K3,3

allows to find all the solutions.
To find the solutions of initial GCS, we must find the numer-

ical values of driving parameters that validate the constraints
removed. To automatically determine the allowable ranges for
a driving parameter the method presented in [24] is used. With
only one driving parameter, sampling the ranges is efficient to
find all the solutions. But if there are two or more parameters,
the sampling is too time-consuming and we resort to a paths
tracking method.

IV. PATHS TRACKING

Once symbolic stage presented in III has been performed,
giving a construction plan Cp depending on driving pa-
rameters, a numerical function is obtained as follows: let
k = (k0, ..., kd−1) be the d-dimensional vector of the deleted
constraint’s parameter values. On a given branch, evaluating
Cp with the vector v = (v0, ..., vd−1) of values for the driving
parameters provides a figure (i.e. the values of the coordinates
of geometric entities) that will be denoted by Cp(v).

One can check on this figure the constraints that have
been deleted in the symbolic stage. For instance, if the i-th
constraint that has been removed is ki = distance(p0, p1),
where p0 and p1 are two geometric entities, then the distance
between p0 and p1 can be read on Cp(v), giving a real number
fi(Cp(v)), where fi is the functional term associated with the
i-th deleted constraints, for 0 ≤ i ≤ d− 1.

A numerical function F : Rd → Rd is now defined as:
F (v) = (F0(v), ..., Fd−1(v)), where Fi(v) = fi(Cp(v))− ki.
Figure 6 presents the graph of this function F for the K3,3

problem depicted on figures 4 and 5, for all the branches of
Cp. Recall that the added constraint is k9 = distance(p0, p2)
and that the removed constraint is k3 = distance(p3, p4).
With user values for k1, ..., k8 and with k3 = 0.5, the
evaluation of Cp with k9 = 1.0 leads to two figures. On
the first one, fO(Cp(v)) = 2.0 i.e. distance(p4, p3) on this
figure. So the difference with the desired value is 1.5 (see
the graph where values for k9 are on the abscissa). On the
second figure, fO(Cp(v)) = 2.75 and the difference with k3
is 2.25. There are only two numerical interpretations of Cp
for k9 = 1.0 because many intersections failed during the
evaluation of the construction plan.
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Each branch carries a piece of a d-dimensional hypersurface,
and the solutions of the problem are the zero-values of all these
pieces.

The purpose of the numerical stage is the search of the
d-dimensional vectors v∗ satisfying F (v∗) = 0.

Considering that Cp(v) is computed from a sequence of
ruler and compass constructions, we do not have an analytic
expression of F . There is a simple brute force method to
approximate the zero-values of such a function in a given
box of Rd: sample the box accurately enough and evaluate
F on each sample, and on each branch of the evaluation tree
of Cp for a complete research of solutions. Observing that
the number of branches of a construction plan produced by
REPARAM grows exponentially with the number of locus
intersections that have more than one solution, this method
leads to a high computational cost when d and the depth of
the evaluation tree are increasing. Another (classical) problem
comes from the precision of the sampling which could make
miss some solutions.

However, one can assume that on a given branch of the
construction plan, F is almost everywhere infinitely differen-
tiable: indeed, one can associate with each primitive produced
by Cp an analytic expression in a Cartesian reference, and
construct a system of equations such as the coordinates of
the primitives are a solution of this system. These functions
are infinitely derivable except on their poles, consisting in a
finite set of parameter values, because they are combination
of rational fractions and analytic functions. F consists then
in evaluating some distances or angles on primitives, that are
analytic functions. Then F is almost everywhere smooth, and
zero-values of F can be found with usual numerical methods,
such as Newton’s method or homotopy, that avoids the extra
computational cost of the sampling.

A. Finding first solution

Assuming that Cp is also parametrized by the parameters
of the constraints that have to be satisfied, F can be seen as a
parametrized function. Let h be the parameters of constraints

of the GCS, and h∗ the values for these parameters that have
to be fulfilled. Let us note F (h, v) the function F for the
vector of parameters h. Assume now that the sketch given by
the user is a solution of the GCS with another valuation of
the parameters h, say hsk, the ones that are satisfied by this
sketch. So by reading values of driving parameters on it, the
sketch provides a solution vsk of F (hsk, v) = 0.

Let us consider the d+ 1-dimensional function

H : [0, 1]× Rd → Rd defined by
H(t, v) = F ((1− t)hsk + th∗, v).

Notice that for t = 0, a solution of H(0, v) = 0 is known since
the values vsk of the driving parameters read on the sketch
fulfill this system. So one branch must lead to the sketch. As
shown in [25], that presents how to establish an homotopy in
the parameter’s space, H(t, v) = 0 consists in curves, called
homotopic paths, climbing from the solutions H(0, v) = 0 to
the solutions of H(1, v) = 0. These paths have to be followed
from the known solutions to the guessed solutions. A survey
on continuation and path-tracking methods can be found in
[26], and IV-C is devoted to the path-tracking method that has
been implemented.

Since only one solution of H(0, v) = 0 is known (vsk that
is provided by the sketch), we can obtain at most one solution
v∗ of H(1, v) = 0 using this method.

The following part explains how to obtain more solutions.

B. Finding other solutions

Consider now the system F defined by F (h, v) = 0 for a
given set of parameters h, and let us define, for 0 ≤ i ≤ d−1,
its i-th partial system F i by:

F0(v) = 0
...

Fi−1(v) = 0
Fi+1(v) = 0

...
Fd−1(v) = 0

where v = (v0, ..., vd−1).
The solution set of such a system of d − 1 independent

equations of d real variables is a curve, that is smooth almost
everywhere since the functions Fi are analytic. However, this
curve may have several connected components.

Considering a point of this curve is known (vsk if h = hsk

or v∗ if h = h∗ ), this curve can thus be followed from this
known point by a path-tracking method (see IV-C).

A sequence of points is thus obtained, and if one of this
points, say vc, satisfies |Fi(vc)| < ε, for a given ε ∈ R, vc is
close to a solution of F . (vc is to be corrected into a solution,
for instance with Newton’s method applied on the system F).

This operation is performed for each system F i and each
found solution.

Such curves are presented in figures 10 and 12.
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Fig. 7. Two components of a followed curve, the known point v∗, and
the tangent t to the curve in v∗. Applying a too large step δ can lead the
corrected point v′′∗ of the prediction v′∗ to lie on another component of the
curve. Normal lines to the prediction vectors are the solution set of the added
equations fm−1(δ, v) = 0.

C. Curve Tracking

The path-tracking method that has been implemented in
order to follow the curves defined in IV-A and IV-B is the
so-called predictor-corrector method: knowing a point on the
followed curve, translating it in the direction given by the
tangent to the curve at this point, provides a prediction that is
corrected into a point lying on the curve.

Let f(v) = 0 be a system of m− 1 independent equations
fi(v) = 0 of m real variables v = (v0, ..., vm−1), and v∗ a
point satisfying f(v∗) = 0 (in other words, v∗ is a point of the
curve defined by f(v) = 0). The tangent t = (t0, ..., tm−1) of
the curve in v∗ is the solution of the equation J(v∗)t = 0 such
as max0≤i≤m−1ti = 1, where J(v∗) is the Jacobian matrix of
f in v∗. Since no analytical expression of f is known, J(v∗)
is computed in practice with finite differences.

Then a new point v′∗ on the curve is predicted such as v′∗ =
v∗ + δt, where δ is a real parameter.

In order to correct v′∗ by the Newton’s method, an additional
equation fm−1(δ, v) parametrized by δ that measures the
progression along the curve has to be added to the system
f(v) = 0. This new equation is defined as fm(δ, v) =
(v − v∗ − δt)tt.

The Newton’s method is then applied to the system
(f0(v) = 0, ..., fm−2(v) = 0, fm−1(δ, v) = 0) with initial
vector v′∗, to obtain a new solution v′′∗ . (See figure 7).

The parameter δ can either be chosen small enough, hoping
the Newton’s iterations will converge, or be adapted (i.e.
halved) each times they do not. Such a method is presented
in [27].

[28] uses interval arithmetic in combination with this
method to avoid the risk of jumping from one component of
the curve to another. (See figure 7).

D. Branch Swapping

As said, the Cp provided by the symbolic stage has several
branches: it means that during the evaluation, some choices
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Fig. 8. Two circles constructed by a construction plan, and their intersections.
In the left part, the considered intersection is the one marked by a filled point.
As the circles are moving away from each other with the variations of driving
parameters, the two intersection becomes one (at the middle). In the right part,
as circles comes back closely, the other intersection is considered.

have to be done. For instance, if two circles have two inter-
sections, one of these intersections has to be selected in order
to continue the evaluation. Only considering the function F
and the systems F i on one branch leads to obtain only pieces
of the curves. Other pieces are obtained by swapping branches
when the curve is no more defined on the current branch. Such
cases happen when two geometric entities (for instance two
circles), that have two intersections, move away from each
other such as they have no more intersection. When these two
entities have only one intersection, the new branch that has to
be considered in order to stay on the same hypersurface, is
the one that makes the movement of geometric entities to be
continuous. See figure 8.

E. Numerical Results

The presented method has been implemented, and we will
now expose its test on three geometric problems. Table 9
shows, for each of these problems, the time of computation
(symbolic and numeric steps) of our method and the number
of found solutions, and compares it with the naive sampling
method (some properties of the problems are also given, as
number of primitives, number of constraints, and the number
of driving parameters).

The research of solutions has been restricted to one branch
of the construction plan.

Sampling Tracking
K3,3

6 primitives 2 solutions, 2 solutions,
9 constraints ' 0.02sec ' 0.4sec
1 added/removed

Dodecagon
12 primitives 2 solutions, 2 solutions,
21 constraints ' 10sec ' 1.5sec
2 added/removed

Icosahedron
12 primitives 1 solution, 2 solutions,
30 constraints ' 767sec ' 17.4sec
3 added/removed

Fig. 9. Number of found solutions and execution times on a PC with
processor at 2.2GHz for three geometric problems.

1) K3,3: The problem illustrated in figure 4 involves six
points in a plane and nine constraints of distance. During the



symbolic stage, one constraint is deleted and one is added
providing a problem solvable by LIM.

The system to solve (see IV-A) consists thus in one equation
in one unknown. One solution is found by homotopy, and one
more by the method of IV-B; in this case, the followed curve
is the graph of the function F , presented in figure 6.

2) Dodecagon: This problem consists in constructing 12
points, knowing 21 distances between these points (see figure
10). Solving this problem with our method leads to replace
two of the initial problem constraints.
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Fig. 10. Left: the constraint graph of a dodecagon. Right: the two curves
followed during the search of new solutions, from the solution localised by a
plus sign.

The two curves, solution set of the two systems F i for
i = {0, 1}, that are followed after computing an initial solution
by homotopy, are shown in the right part of figure 10. The
points of their intersections are solutions of the problem: in
this case, a new solution is found during this stage.

3) Icosahedron: The last problem consists in the construc-
tion of an icosahedron: a polyhedron of 12 vertices and 20
faces in a 3-dimensional space. Since each vertex is connected
with 5 distance constraints, at least three constraints have to
be replaced.

During the step described in IV-C, three systems are con-
sidered, and three curves are followed, and one new solution
is obtained as shown in figure 12, where the three curves are
crossing.

In this case, only one solution is found by sampling (see
table of figure 9). This lack is due to the impossibility to
have a sufficiently high sampling frequency, because of the
computational cost increase.

V. CONCLUSION

Whatever the constraint system is, the reparametrization
provides a construction plan. For this, some constraints could
be replaced by others making the system solvable. The con-
struction plan is a symbolic solution that can potentially lead
to all numerical solutions.

The fact of using a geometric method driving a numeric
one, offers the possibility of having all solutions and allows to
reduce the number of equations and variables that are involved.
For instance, applying a classic numeric method in order to
solve the icosahedron problem (see IV-E3) leads to solve a
system of 30 equations in 30 unknowns, whereas our method
deals with systems of 3 equations in 3 unknowns.

Fig. 11. An icosahedron: vertices represents points in a 3 dimensional space,
and edges are distance constraints between these points.
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Fig. 12. The three curves followed during the search of new solutions, from
the solution localised by a plus sign.

Even if the idea of reparametrization is not new, the sam-
pling method that has been proposed to find numeric values
of driving parameters avoids its use for systems that lead to
change more than two constraints. Moreover, the number of
solutions provided by this method depends on the acuteness
of the sampling grid.

Using an efficient numeric method such as tracking paths
defined by partial systems allows us to apply this solver to
larger problems while producing all of its solutions, which is
the issue of this paper.

However, the numeric stage needs to be improved by
using geometric informations such as relative positions of the
geometric entities, especially to set the parameters in path-
tracking, and to manage the branch changing. Allowing the
path-tracker to deal with complex numbers and working in
a projective space, could improve the numerical processing.
Indeed, multiplicity in intersections (e.g. two solutions in
circle-circle intersection) causes branch changing and remains
numerically sensitive.
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