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Projection and Apparent Contour
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P,Q two analytic maps R3 → R

, possibly Q = Pz = ∂P
∂z

Curve defined as the intersection of two surfaces:

C :

{
P(x , y , z) = 0
Q(x , y , z) = 0

, (x , y , z) ∈ R3

, Pz = ∂P
∂z

Projection in the plane: π(x ,y)(C)

Goal: Isolating singularities of π(x ,y)(C)

Motivations: Computing the topology of π(x ,y)(C)
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Isolating singularities

of apparent contours: algebraic case

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

B = {(x , y) ∈ R2|r(x , y) = 0},

where r(x , y) = Res(P,Pz , z)(x , y)

Singularities of B are the solutions of:
r(x , y) = 0
∂r
∂x (x , y) = 0
∂r
∂y (x , y) = 0

. . . that is over-determined

. . . that has solutions of multiplicity 2
when r is a polynomial:
Gröbner Basis, RUR

. . . where s10, s11, s22 are coefficients in the subresultant chain.

P, degree 6, bit-size 8, 84 monomials
r , degree 30, bit-size 111, 496 monomials
∂r
∂x ,

∂r
∂y , degree 29, bit-size 115, 465 monomials

s11, s10, degree 20, bit-size 89, 231 monomials
s22, degree 12, bit-size 65, 91 monomials

degree of P 5 6 7 8 9

time with RSCube* 3.1s 32s 254s 1898s 9346s
* F. Rouillier
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B = {(x , y) ∈ R2|r(x , y) = 0}, where r(x , y) = Res(P,Pz , z)(x , y)

Singularities of B are the regular solutions of:

(S2)

{
s10(x , y) = 0
s11(x , y) = 0

s.t. s22(x , y) 6= 0

. . . that is over-determined

. . . that has solutions of multiplicity 2
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degree of P 5 6 7 8 9
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* F. Rouillier

[IMP15] Rémi Imbach, Guillaume Moroz, and Marc Pouget.
Numeric certified algorithm for the topology of resultant and
discriminant curves.
Research Report RR-8653, Inria, April 2015.
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Contributions

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

P,Q generic analytic maps
→ characterizing singularities of π(x ,y)(C)
→ describing it as regular solutions of the ball system

P,Q generic polynomials
→ numerical solving of the ball system
→ certified numerical solving of the ball system
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Assumptions on C

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

(A1) C is smooth

(A2) (α, β) ∈ R2 ⇒ P(α, β, z) = Q(α, β, z) = 0 has at most 2 real
roots counted with multiplicities

(A3) {(α, β) ∈ R2|P(α, β, z) = Q(α, β, z) = 0 has two solutions
counted with multiplicities } is a discrete set

(A4) π(x ,y) is a proper map (the pre-image of a compact is a
compact)

(A5) Singularities of π(x ,y)(C) are either nodes, or ordinary cusps

(A1), (A2), (A3), (A5) hold for generic maps
(A4) holds at least for generic polynomials
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Classification of Singularities of π(x ,y)(C)

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

(A1) . . .

(A2) (α, β) ∈ R2 ⇒ P(α, β, z) = Q(α, β, z) = 0 has at most 2 real
roots counted with multiplicities

(A3) . . .

Let (α, β) ∈ π(x ,y)(C). P(α, β, z) = Q(α, β, z) = 0 has:

Lemma 1.

one root of multiplicity one

then

Lemma 2.

two roots of multiplicities one

then

Lemma 3.

one root of multiplicity two ⇔ Pz(α, β, z) = Qz(α, β, z) = 0

then

k = 1 k = 2 k = 3Assumptions on C:

(A5) Singularities of π(x ,y)(C) are either nodes, or ordinary cusps

k = 1 k = 1
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Isolating singularities:

the Ball system

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Lemma 5. Under the Assumptions (A1)− (A4), all the solutions of
S4 in R2 × R× R+ are regular if and only if (A5) is satisfied.

Lemma 2: (x , y) is a node of π(x ,y)(C) ⇔ (x , y , z1, z2) satisfies:

P(x , y , z1) = Q(x , y , z1) = P(x , y , z2) = Q(x , y , z2) = 0

Lemma 3: (x , y) is a cusp of π(x ,y)(C) ⇔ (x , y , z) satisfies:

P(x , y , z) = Q(x , y , z) = Pz(x , y , z) = Qz(x , y , z) = 0

Lemma 4.

Singularities of π(x ,y)(C) are exactly the real solutions of:

when r = 0

(S4)


1
2 (P(x , y , c +

√
r) + P(x , y , c −

√
r)) = 0

1
2
√
r
(P(x , y , c +

√
r)− P(x , y , c −

√
r)) = 0

1
2 (Q(x , y , c +

√
r) + Q(x , y , c −

√
r)) = 0

1
2
√
r
(Q(x , y , c +

√
r)− Q(x , y , c −

√
r)) = 0

c : center of z1, z2

r = ‖cz1‖2
2
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Numerical Solving

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

P,Q are polynomials ⇒ equations of S4 are polynomials

Homotopy

• Solutions of S4 are approximated

• Solves S4 in C4 ⇒ Singularities are isolated in R2

• Can be certified

• for dense polynomials with Bézout bound of S4

• with a certified path tracker

• Implementations: Bertini allows Adaptive Multi Precision (AMP)

Example:
Target system:

x5 + 3x2 + x = 0
Initial system:

γ (x5 − 1) = 0, γ ∈ C
Homotopy function:

H(x , t) = (1− t)F0(x) + tF (x)
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Numerical Solving

1https://bertini.nd.edu/
Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

P,Q are polynomials ⇒ equations of S4 are polynomials

Homotopy

• Solutions of S4 are approximated

• Solves S4 in C4 ⇒ Singularities are isolated in R2

• Can be certified

• Implementations: Bertini1 allows Adaptive Multi Precision (AMP)

https://bertini.nd.edu/


Introduction Characterizing singularities Isolating singularities Conclusion

Numerical Solving 10/ 14

Isolation of singularities of an apparent contour

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Datas: Random dense polynomials of degree d , bit-size 8

Numerical results: Isolating singularities in R2

sub-resultant system S2 ball system S4

DP AMP DP AMP
d t Missed Sols t t Missed Sols t

5 3.638 0 147.852 3.818 2 15.01
6 54.49 1 1005 20.80 1 165.7
7 617.9 6 ≥ 3000 88.50 0 1147
8 2799 885 ≥ 3000 319.3 0 ≥ 3000
9 ≥ 3000 1178 ≥ 3000 935.6 2 ≥ 3000

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU

L5640 @ 2.27GHz machine.
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Certified Numerical Solving

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

P,Q are polynomials ⇒ equations of S4 are polynomials

����

��

�
�
�
�

��
��
��
��

��

�
�
�
�

Subdivision or Interval Solver or Branch and Bound approach

• Solutions of S4 are isolated in boxes

• Arbitrary arithmetic precision ⇒ Termination ⇒ Correction

• Solves S4 in D ⊂ R4

⇒ Singularities are isolated in B ⊆ R2

• Implementation: home made in C++

• evaluation of polynomials with horner scheme → quick
• evaluation of polynomials at order 2 → sharp
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• Implementation: home made in C++

• evaluation of polynomials with horner scheme → quick
• evaluation of polynomials at order 2 → sharp

[Sta95] Volker Stahl.
Interval Methods for Bounding the Range of Polynomials and
Solving Systems of Nonlinear Equations.
PhD thesis, Johannes Kepler University, Linz, Austria, 1995.
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P,Q are polynomials ⇒ equations of S4 are polynomials

Subdivision or Interval Solver or Branch and Bound approach

• Solutions of S4 are isolated in boxes

• Arbitrary arithmetic precision ⇒ Termination ⇒ Correction

• Solves S4 in D ⊆ R4 ⇒ Singularities are isolated in B ⊆ R2

• Implementation: home made in C++

• evaluation of polynomials with horner scheme → quick
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Isolation of singularities of an apparent contour

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Datas: Random dense polynomials of degree d , bit-size 8

Numerical results: Isolating singularities in R2

sub-resultant system S2 ball system S4

DP AMP Subdivision DP AMP Subdivision
d

5 3.638 147.852 0.251 3.818 15.01 25.34
6 54.49 1005 1.353 20.80 165.7 11.38
7 617.9 ≥ 3000 124.1 88.50 1147 54.21
8 2799 ≥ 3000 57.72 319.3 ≥ 3000 99.22
9 ≥ 3000 ≥ 3000 54.74 935.6 ≥ 3000 95.11

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU

L5640 @ 2.27GHz machine.
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Enclosing C to restrain the solving domain of S4

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Enclosing C in a sequence of boxes:

• Certified path tracker

• 1 point on each C.C.: subdivision solver

Geometric characterization of nodes and cusps:

• 4D square system

• Subdivision Solver

• Restriction of the solving domain
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Isolation of singularities of an apparent contour

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Datas: Random dense polynomials of degree d , bit-size 8

Numerical results: Isolating singularities in [−1, 1]× [−1, 1]

sub-resultant system S2 ball system S4

Subdivision Subdivision Curve tracking & subdivision
d t t t

5 0.05 24.8 1.25
6 0.50 8.40 2.36
7 4.44 43.8 4.13
8 37.9 70.2 5.91
9 23.1 45.6 5.30

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU

L5640 @ 2.27GHz machine.
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