

Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve

Rémi Imbach, Guillaume Moroz and Marc Pouget

Projection and Apparent Contour

 $\begin{array}{l} P, Q \text{ two analytic maps } \mathbb{R}^3 \to \mathbb{R} \\ \text{Curve defined as the intersection of two surfaces:} \\ \mathcal{C} : \left\{ \begin{array}{l} P(x,y,z) &= 0 \\ Q(x,y,z) &= 0 \end{array}, (x,y,z) \in \mathbb{R}^3 \end{array} \right. \end{array}$

Projection in the plane: $\pi_{(x,y)}(\mathcal{C})$

Projection and Apparent Contour

P, Q two analytic maps $\mathbb{R}^3
ightarrow \mathbb{R}$

Curve defined as the intersection of two surfaces:

$$\mathcal{C}: \begin{cases} P(x, y, z) = 0\\ P_z(x, y, z) = 0 \end{cases}, (x, y, z) \in \mathbb{R}^3, \qquad P_z = \frac{\partial P}{\partial z} \end{cases}$$

Apparent contour: $\pi_{(x,y)}(\mathcal{C})$

P, Q two analytic maps $\mathbb{R}^3 \to \mathbb{R}$, possibly $Q = P_z = \frac{\partial P}{\partial z}$ Curve defined as the intersection of two surfaces: $\mathcal{C} : \begin{cases} P(x, y, z) = 0 \\ Q(x, y, z) = 0 \end{cases}, (x, y, z) \in \mathbb{R}^3$

Projection in the plane: $\pi_{(x,y)}(\mathcal{C})$

Goal: Isolating singularities of $\pi_{(x,y)}(\mathcal{C})$

Motivations: Computing the topology of $\pi_{(x,y)}(\mathcal{C})$

2/ 14

P, Q two analytic maps $\mathbb{R}^3 \to \mathbb{R}$, possibly $Q = P_z = \frac{\partial P}{\partial z}$ Curve defined as the intersection of two surfaces:

$$\mathcal{C}: \left\{ egin{array}{ll} P(x,y,z) &= 0 \ Q(x,y,z) &= 0 \end{array}, (x,y,z) \in \mathbb{R}^3 \end{array}
ight.$$

Projection in the plane: $\pi_{(x,y)}(\mathcal{C})$

Goal: Isolating singularities of $\pi_{(x,y)}(\mathcal{C})$

Motivations: Computing the topology of $\pi_{(x,y)}(\mathcal{C})$

Isolating singularities

$$\mathcal{B} = \{(x,y) \in \mathbb{R}^2 | r(x,y) = 0\},$$

Singularities of \mathcal{B} are the solutions of:

$$\begin{cases} r(x, y) = 0\\ \frac{\partial r}{\partial x}(x, y) = 0\\ \frac{\partial r}{\partial y}(x, y) = 0 \end{cases}$$

... that is over-determined ... that has solutions of multiplicity 2 when *r* is a polynomial: Gröbner Basis, RUR

Isolating singularities of apparent contours: algebraic case

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}$, where $r(x, y) = Res(P, P_z, z)(x, y)$

Singularities of \mathcal{B} are the solutions of:

$$\begin{cases} r(x, y) = 0\\ \frac{\partial r}{\partial x}(x, y) = 0\\ \frac{\partial r}{\partial y}(x, y) = 0 \end{cases}$$

Ρ, degree 6, bit-size 8, 84 monomials degree 30, bit-size 111, 496 monomials $r, \frac{\partial r}{\partial x}, \frac{\partial r}{\partial y},$ degree 29, 465 monomials bit-size 115. degree of P5 6 7 8 9 time with RSCube* 32s 1898s 9346s 3.1s 254s * F. Rouillier

Rémi Imbach, Guillaume Moroz and Marc Pouget

Isolating singularities of apparent contours: algebraic case

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}$, where $r(x, y) = Res(P, P_z, z)(x, y)$

Singularities of $\mathcal B$ are the regular solutions of:

$$(S_2) \begin{cases} s_{10}(x,y) = 0 \\ s_{11}(x,y) = 0 \end{cases}$$
 s.t. $s_{22}(x,y) \neq 0$

... where s_{10} , s_{11} , s_{22} are coefficients in the subresultant chain.

[IMP15] Rémi Imbach, Guillaume Moroz, and Marc Pouget. Numeric certified algorithm for the topology of resultant and discriminant curves.

Research Report RR-8653, Inria, April 2015.

Rémi Imbach, Guillaume Moroz and Marc Pouget

Contributions

- P, Q generic analytic maps
- \rightarrow characterizing singularities of $\pi_{(x,y)}(\mathcal{C})$
- \rightarrow describing it as regular solutions of the ball system
- P, Q generic polynomials
- \rightarrow numerical solving of the ball system
- \rightarrow certified numerical solving of the ball system

Assumptions on $\ensuremath{\mathcal{C}}$

- $(A_1) \ C$ is smooth
- $(A_2) \ (\alpha,\beta) \in \mathbb{R}^2 \Rightarrow P(\alpha,\beta,z) = Q(\alpha,\beta,z) = 0 \text{ has at most 2 real roots counted with multiplicities}$
- (A₃) { $(\alpha, \beta) \in \mathbb{R}^2 | P(\alpha, \beta, z) = Q(\alpha, \beta, z) = 0$ has two solutions counted with multiplicities } is a discrete set
- (A₄) $\pi_{(x,y)}$ is a proper map (the pre-image of a compact is a compact)

$\begin{array}{l} (A_1) \ \dots \\ (A_2) \ (\alpha, \beta) \in \mathbb{R}^2 \Rightarrow P(\alpha, \beta, z) = Q(\alpha, \beta, z) = 0 \text{ has at most 2 real} \\ \text{ roots counted with multiplicities} \\ (A_3) \ \dots \end{array}$

Let
$$(\alpha, \beta) \in \pi_{(x,y)}(\mathcal{C})$$
. $P(\alpha, \beta, z) = Q(\alpha, \beta, z) = 0$ has:

one root of multiplicity one

two roots of multiplicities one

one root of multiplicity two \Leftrightarrow $P_z(\alpha, \beta, z) = Q_z(\alpha, \beta, z) = 0$

Let
$$(\alpha, \beta) \in \pi_{(x,y)}(\mathcal{C})$$
. (α, β) has:

one antecedent with a non vertical tangent

two antecedents

one antecedent with a vertical tangent

Let $(\alpha, \beta) \in \pi_{(x,y)}(\mathcal{C})$. If (α, β) has:

Lemma 1. one antecedent with a non vertical tangent then (α, β) is a regular point of $\pi_{(x,y)}(\mathcal{C})$

Let $(\alpha, \beta) \in \pi_{(x,y)}(\mathcal{C})$. If (α, β) has:

Lemma 1. one antecedent with a non vertical tangent then (α, β) is a regular point of $\pi_{(x,y)}(\mathcal{C})$

Lemma 2. two antecedents then $\pi_{(x,y)}(\mathcal{C})$ is locally diffeomorphic to $x^2 - y^{2k} = 0$, with $k \ge 1$.

Let $(\alpha, \beta) \in \pi_{(x,y)}(\mathcal{C})$. If (α, β) has:

Lemma 1. one antecedent with a non vertical tangent then (α, β) is a regular point of $\pi_{(x,y)}(\mathcal{C})$

Lemma 2. two antecedents then $\pi_{(x,y)}(\mathcal{C})$ is locally diffeomorphic to $x^2 - y^{2k} = 0$, with $k \ge 1$.

Lemma 3. one antecedent with a vertical tangent then $\pi_{(x,y)}(\mathcal{C})$ is locally diffeomorphic to $x^2 + y^{2k+1} = 0$, with $k \ge 1$.

Assumptions on C:

(A5) Singularities of $\pi_{(x,y)}(\mathcal{C})$ are either nodes, or ordinary cusps

Lemma 2. two antecedents then (α, β) is a node (k = 1) of $\pi_{(x,y)}(C)$.

Lemma 3. one antecedent with a vertical tangent then (α, β) is an ordinary cusp (k = 1) of $\pi_{(x,y)}(C)$.

Assumptions on $\ensuremath{\mathcal{C}}$

- $(A_1) \ C$ is smooth
- $(A_2) \ (\alpha,\beta) \in \mathbb{R}^2 \Rightarrow P(\alpha,\beta,z) = Q(\alpha,\beta,z) = 0 \text{ has at most 2 real roots counted with multiplicities}$
- $\begin{array}{l} (A_3) \ \{(\alpha,\beta)\in \mathbb{R}^2 | P(\alpha,\beta,z)=Q(\alpha,\beta,z)=0 \text{ has two solutions} \\ \text{ counted with multiplicities } \} \text{ is a discrete set} \end{array}$
- (A₄) $\pi_{(x,y)}$ is a proper map (the pre-image of a compact is a compact)
- (A₅) Singularities of $\pi_{(x,y)}(\mathcal{C})$ are either nodes, or ordinary cusps

 $(A_1), (A_2), (A_3), (A_5)$ hold for generic maps (A_4) holds at least for generic polynomials

Isolating singularities:

Lemma 2: (x, y) is a node of $\pi_{(x,y)}(\mathcal{C}) \Leftrightarrow (x, y, z_1, z_2)$ satisfies:

$$P(x, y, z_1) = Q(x, y, z_1) = P(x, y, z_2) = Q(x, y, z_2) = 0$$

Lemma 3: (x, y) is a cusp of $\pi_{(x,y)}(\mathcal{C}) \Leftrightarrow (x, y, z)$ satisfies:

$$P(x, y, z) = Q(x, y, z) = P_z(x, y, z) = Q_z(x, y, z) = 0$$

Isolating singularities: the Ball system

Singularities of $\pi_{(x,y)}(\mathcal{C})$ are exactly the real solutions of:

$$(S_4) \begin{cases} \frac{1}{2} (P(x, y, c + \sqrt{r}) + P(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}} (P(x, y, c + \sqrt{r}) - P(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2} (Q(x, y, c + \sqrt{r}) + Q(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}} (Q(x, y, c + \sqrt{r}) - Q(x, y, c - \sqrt{r})) &= 0 \end{cases}$$

Isolating singularities: the Ball system

Singularities of $\pi_{(x,y)}(\mathcal{C})$ are exactly the real solutions of: when r=0

$$P(x, y, c) = 0 P_z(x, y, c) = 0 Q(x, y, c) = 0 Q_z(x, y, c) = 0$$

 (\mathcal{S}_4)

Isolating singularities: the Ball system

Lemma 5. Under the Assumptions $(A_1) - (A_4)$, all the solutions of S_4 in $\mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^+$ are regular if and only if (A_5) is satisfied.

Lemma 4. Singularities of $\pi_{(x,y)}(\mathcal{C})$ are exactly the real solutions of:

$$(S_4) \begin{cases} \frac{1}{2}(P(x,y,c+\sqrt{r})+P(x,y,c-\sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}}(P(x,y,c+\sqrt{r})-P(x,y,c-\sqrt{r})) &= 0\\ \frac{1}{2}(Q(x,y,c+\sqrt{r})+Q(x,y,c-\sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}}(Q(x,y,c+\sqrt{r})-Q(x,y,c-\sqrt{r})) &= 0 \end{cases}$$

Numerical Solving

P, Q are polynomials \Rightarrow equations of \mathcal{S}_4 are polynomials

Homotopy

- Solutions of \mathcal{S}_4 are approximated
- Solves \mathcal{S}_4 in $\mathbb{C}^4 \Rightarrow$ Singularities are isolated in \mathbb{R}^2
- Can be certified
 - for dense polynomials with Bézout bound of \mathcal{S}_4
 - with a certified path tracker

Example:

Target system: $x^5 + 3x^2 + x = 0$ Initial system: $\gamma \ (x^5 - 1) = 0, \ \gamma \in \mathbb{C}$

Homotopy function: $H(x, t) = (1 - t)F_0(x) + tF(x)$

Numerical Solving

P, Q are polynomials \Rightarrow equations of \mathcal{S}_4 are polynomials

Homotopy

- Solutions of \mathcal{S}_4 are approximated
- Solves \mathcal{S}_4 in $\mathbb{C}^4 \Rightarrow$ Singularities are isolated in \mathbb{R}^2
- Can be certified
- Implementations: Bertini¹ allows Adaptive Multi Precision (AMP)

¹https://bertini.nd.edu/

Rémi Imbach, Guillaume Moroz and Marc Pouget

Isolation of singularities of an apparent contour

Datas: Random dense polynomials of degree d, bit-size 8

Numerical results: Isolating singularities in \mathbb{R}^2

	sub-resultant system \mathcal{S}_2			ball system \mathcal{S}_4		
	DP		AMP	DP		AMP
d	t	Missed Sols	t	t	Missed Sols	t
5	3.638	0	147.852	3.818	2	15.01
6	54.49	1	1005	20.80	1	165.7
7	617.9	6	\geq 3000	88.50	0	1147
8	2799	885	\geq 3000	319.3	0	\geq 3000
9	\geq 3000	1178	\geq 3000	935.6	2	\geq 3000

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine.

Certified Numerical Solving

Subdivision or Interval Solver or Branch and Bound approach

- Solutions of \mathcal{S}_4 are isolated in boxes
- Arbitrary arithmetic precision \Rightarrow Termination \Rightarrow Correction
- Solves \mathcal{S}_4 in $\boldsymbol{\mathsf{D}}\subset\mathbb{R}^4$

Certified Numerical Solving

 ${\it P}, {\it Q}$ are polynomials \Rightarrow equations of ${\cal S}_4$ are polynomials

Subdivision or Interval Solver or Branch and Bound approach

- Solutions of \mathcal{S}_4 are isolated in boxes
- Arbitrary arithmetic precision \Rightarrow Termination \Rightarrow Correction
- Solves \mathcal{S}_4 in $D\subseteq \mathbb{R}^4 \Rightarrow$ Singularities are isolated in $B\subseteq \mathbb{R}^2$

[Sta95] Volker Stahl.

Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations.

PhD thesis, Johannes Kepler University, Linz, Austria, 1995.

Certified Numerical Solving

Subdivision or Interval Solver or Branch and Bound approach

- Solutions of \mathcal{S}_4 are isolated in boxes
- Arbitrary arithmetic precision \Rightarrow Termination \Rightarrow Correction
- Solves \mathcal{S}_4 in $D\subseteq \mathbb{R}^4 \Rightarrow$ Singularities are isolated in $B\subseteq \mathbb{R}^2$
- Implementation: home made in C++
 - evaluation of polynomials with horner scheme $\qquad \rightarrow {\sf quick}$
 - evaluation of polynomials at order 2 $\qquad \rightarrow {\rm sharp}$

Isolation of singularities of an apparent contour

Datas: Random dense polynomials of degree d, bit-size 8

Numerical results: Isolating singularities in \mathbb{R}^2

	sub-resultant system \mathcal{S}_2			ball system \mathcal{S}_4		
	DP	AMP	Subdivision	DP	AMP	Subdivision
d						
5	3.638	147.852	0.251	3.818	15.01	25.34
6	54.49	1005	1.353	20.80	165.7	11.38
7	617.9	\geq 3000	124.1	88.50	1147	54.21
8	2799	\geq 3000	57.72	319.3	\geq 3000	99.22
9	\geq 3000	\geq 3000	54.74	935.6	\geq 3000	95.11

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine.

Enclosing ${\mathcal C}$ to restrain the solving domain of ${\mathcal S}_4$

Enclosing $\ensuremath{\mathcal{C}}$ in a sequence of boxes:

- Certified path tracker
- 1 point on each C.C.: subdivision solver

Geometric characterization of nodes and cusps:

- 4D square system
- Subdivision Solver
- Restriction of the solving domain

Isolation of singularities of an apparent contour

Datas: Random dense polynomials of degree d, bit-size 8

Numerical results: Isolating singularities in $[-1,1]\times [-1,1]$

	sub-resultant system \mathcal{S}_2	ball system \mathcal{S}_4		
	Subdivision	Subdivision	Curve tracking & subdivision	
d	t	t	t	
5	0.05	24.8	1.25	
6	0.50	8.40	2.36	
7	4.44	43.8	4.13	
8	37.9	70.2	5.91	
9	23.1	45.6	5.30	

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine.

${\sf Questions}\ ?$