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Introduction
GCS

Geometric Constraint Systems (GCS)

o Set of geometric objects
e points, lines, circles, ...
e unknowns: Point : Py, Py, ...

e Satisfying a set of constraints

e angles, distances, incidences, ...
e terms: R

e Given via a sketch in CAD context

Unknowns:

Point : Py, P1,..., Py
Parameters:

Length : ho, hy,. ..
Constraints:

ho = distance(Po, P1)
h1 = distance(Py, P>)

coplanar(Pa, Ps, Ps, P7)
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e Satisfying a set of constraints

e angles, distances, incidences, ...
e terms: R

e Given via a sketch in CAD context
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Introduction
Constraintness

Structure of solution space

Constraints invariant by isometries: solutions sought modulo isometries

A GCS G is said generically
o well constrained : finite number of sol. (mod. isometries)
e under constrained : infinite number of sol. (mod. isometries)
e over constrained : no sol. (mod. isometries)

for almost all values of parameters (in an open set).
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Introduction

Constraintness

Structure of solution space

Combinatorial Characterization: Laman Criterion
c: number of constraints, n: number of points
G’ < G with ¢’: number of constraints, n’: number of points
e c=2n-3
e VG' < G, ' <2n -3

In 2D: < gen. well constrainted points/distances GCS
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Introduction

Constraintness

Structure of solution space

Constraints invariant by isometries: solutions sought modulo isometries

A GCS G is said generically

e well constrained : finite number of sol. (mod. isometries)
e under constrained : infinite number of sol. (mod. isometries)
e over constrained : no sol. (mod. isometries)
for almost all values of parameters (in an open set).
Combinatorial Characterization: Laman Criterion
c: number of constraints, n: number of points

G’ < G with ¢’: number of constraints, n’: number of points
e c=3n—-6

e VG' < G, c'<3n -6

In 3D: no sufficient condition is known.
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Introduction
Finding isolated solutions

Resolution

Symbolic resolution
e Locus Intersection Method (LIM), Knowledge based systems
e Algebraic approach
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Introduction

Finding isolated solutions

Resolution

Numerical resolution
e Exhaustive search: homotopy methods, interval methods

Unknowns:

Point Py, ..., P7 F:RI18 _, R18

Constraints:

ho = distance(Po, P1) X0 [1PoP1l| — ho

hy = distance(P1, P2) |PLP2|| — b

e X17 PR

coplanar(Py, Py, P2, P3) = det(PoP1, PoP2, PoP3)

coplanar(Py, Ps, Pg, P; s
planar(Fa, Ps, Pe. F1) det(PsP%, Py P, PaPy)
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Introduction

Finding isolated solutions

Resolution

Numerical resolution
e Exhaustive search: homotopy methods, interval methods

o Single sol. search: Newton-Raphson, homotopy from the sketch

Unknowns:
Point Py, ..., P7 F R x R12 _ R18
Constraints:
X —_—
ho = distance(Po, P1) X0 [|PoP1]| — ho
h1 = distance(P1, P2) [|P1P2|| — b1
e X17 PR
coplanar(Po, Py, P2, P3) ho = det(PoP1, PoP2, PoP3)
coplanar(Py, Ps, Pg, P; = e ——
planar(Ps, Ps, Ps, Pr) i det(P4Ps, P4 Pg, P4P7)
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Introduction

Finding isolated solutions

Resolution

Locus Intersection Method (LIM), Knowledge based systems

Algebraic approach

Exhaustive search: homotopy methods, interval methods

Single sol. search: Newton-Raphson, homotopy from the sketch

“Hybrid"” approaches
e Reparameterization

e Decomposition

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Introduction

Our method

Main contributions

Global homotopy approach
e homotopy method specialized to geometric constraint solving
e several solutions found, similar to the sketch

e deals with non-homogeneous solutions sets dimensions

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

RESTS

Some numerical results

Comparison with the free software HOM4PS-2.0:
e homotopy resolution of systems of polynomial equations

e finds all solutions

Table: Execution times!.
HOM4PS-2.0: | global homotopy:

Disulfide:

nb solutions 18 8
time 6129s 3s

Hexahedron:

nb solutions 16 7
time 12800s 1.6s

Icosahedron:

nb solutions -2 28
time - Os

lon an Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
2computation interrupted after a week
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Global Homotopy

RESTS

Some numerical results

Comparison with the free software HOM4PS-2.0:
e homotopy resolution of systems of polynomial equations

e finds all solutions

Table: Execution times!.

HOM4PS-2.0: | global homotopy:
Disulfide:
nb solutions 18 8
time 6129s 3s
' v 12 objects Hexahedlfon:
nb solutions 16 7
A time 12800s 1.6s
‘( lcosahedron:
nb solutions 2 28
time - Os

lon an Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
2computation interrupted after a week
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Global Homotopy

Classical homotopy methods

Homotopy methods

Main idea: Continuous deformation
e of an initial system Fy(x) = 0 (known solutions)
e into a target system F(x) = 0 (sought solutions)

via an homotopy function H : C" x [0,1] — C"
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Example: =
Target system:
X +3x2+x=0
Initial system:
vy(x*-1)=0,y€C
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Homotopy function: e |,
——— ““-‘
H(x,t) = (1 — t)Fo(x) + tF(x) asls a————
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Global Homotopy

Classical homotopy methods

Homotopy methods

Main Result:

If H is regular, connected components of the set
{(x,t) € C" x [0,1]|H(x, t) = 0} are smooth manifolds of
dimension 1: the homotopy paths.

-correction method:
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Global Homotopy

Classical homotopy methods

Homotopy methods

Main Result:
If H is regular, connected components of the set
{(x,t) € C" x [0,1]|H(x, t) = 0} are smooth manifolds of
dimension 1: the homotopy paths.

Example:
Target system:
X +3x2+x=0
Initial system:
x*-1)=0
Homotopy function:
H(x,t) = (1 — t)Fo(x) + tF(x)
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Global Homotopy

Classical homotopy methods

Homotopy methods

Main Result:
If H is regular, connected components of the set
{(x,t) € C" x [0,1]|H(x, t) = 0} are smooth manifolds of
dimension 1: the homotopy paths.

Gamma trick: for almost all v € C”,
no critical points
H is regular
paths are strict. increasing with t
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Example: =
Target system:
X +3x2+x=0
Initial system:
vy(x*-1)=0,y€C
Homotopy function:
H(x,t) = (1 — t)Fo(x) + tF(x) asds

fo
I
Q’
;.
’o

L
I~
;:«-';:'
v

|
‘0

g
'f
|
)

'¢
”
:
|
!
|

|
|

—

,
’o

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Classical homotopy methods

Homotopy methods

Over-estimation of zeros of F:
e several paths reach the same solution

e solutions at infinity (detected in P")

Example:
Target system:
X +3x2+x=0
Initial system:
y(x1®—1)=0,v€C
Homotopy function:
H(x,t) = (1 — t)Fo(x) + tF(x)
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Global Homotopy
Application to Geometric Constraint Solving

Application: Classical homotopy method

Building homotopy function:
Parameters:
aso given by the user
Target system: numerical function F(x, aso)

Advantage:

e all isolated solutions are found

Disadvantages: high computational cost
e number of zero of F over-estimated

e most of solutions are complex

[DHO0] C. Durand and C.M. Hoffmann.
A systematic framework for solving geometric constraints analytically.
Journal of Symbolic Computation, 30(5):493-519, 2000.
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Global Homotopy

Application to Geometric Constraint Solving

Application: Using sketch

Building homotopy function: Sketch: xg € R”
Parameters: ag, read on the sketch

aso given by the user
Homotopy function: F(x, (1 — t)as + taso)

Advantage: low computational cost

e a single path is followed

e solution similar to the sketch
Disadvantages:

e a single solution is found

e path is followed R" x [0, 1]

[LM95] Hervé Lamure and Dominique Michelucci.
Solving geometric constraints by homotopy.
pages 263-269, 1995.

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Application to Geometric Constraint Solving

Considering homotopy path in R” x [0, 1]
(x,t) €S, § € R" x [0,1] homotopy path of H

e solution for parameters (1 — t)ag + taso

o only real solutions are found

Unknowns:

Point Py, ..., Ps

Parameters:

Length hg, ..., h11

Constraints: A

distance(Py, P1) = ho

distance(Ps3, Ps) = h11

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Global homotopy

Considering homotopy path in R” x R
(x,t) €S, S€R" xR  homotopy path of H

e solution for parameters (1 — t)ag + taso
o only real solutions are found

e several (sometimes all) solutions are found

Unknowns:

Point Py, ..., Ps
Parameters:

Length hg, ..., h11
Constraints:
distance(Py, P1) = ho

distance(Ps3, Ps) = h11
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Global Homotopy

Global homotopy

Considering homotopy path in R” x R
(x,t) €S, S€R” xR  homotopy path of H

e solution for parameters (1 — t)ag + taso
o only real solutions are found

e several (sometimes all) solutions are found

If H is regular its homotopy paths in R” x R are diffeomorphic

e to a circle
= several solutions LN / -
= termination criterion

e to a line
= infinite computation

t=0

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Global homotopy

Considering homotopy path in R” x R
(x,t) €S, S€R” xR  homotopy path of H

e solution for parameters (1 — t)ag + taso
o only real solutions are found

e several (sometimes all) solutions are found

If H is regular its homotopy paths in R” x R are diffeomorphic

e to a circle
= several solutions LN / l:]
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Global Homotopy

Solutions at infinity

Considering homotopy path in R” x R
(x,t) €S, S€R” xR  homotopy path of H

e solution for parameters (1 — t)ag + taso
o only real solutions are found

e several (sometimes all) solutions are found

If H is regular its homotopy paths in R” x R are diffeomorphic

e to a circle
= several solutions LN l:]
= termination criterion

e to a line
= infinite computation
= that lead to a solution at infinity
its limit is a specific geometric configuration that can be
detected

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Regularity

Considering homotopy path in R” x R
(x,t) €S, S€R” xR  homotopy path of H

e solution for parameters (1 — t)ag + taso
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e several (sometimes all) solutions are found
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Global Homotopy

Regularity

Example: the hexahedron problem
Build an hexahedron, knowing length of its 12 edges.

For allmost all values of parameters, its solutions are:

e isolated points

Unknowns:
8 points 18 dof
Constraints:
12 distances

6 coplanarity 18 dor

University of Strasbourg, ICube, UMR 7357
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Global Homotopy

Regularity

Example: the hexahedron problem
Build an hexahedron, knowing length of its 12 edges.

For allmost all values of parameters, its solutions are:

e isolated points

e solutions of problem 2
Problem 2:  Build 8 points in a plane, knowing 12 distances
pairwise.

GCS 2:
Unknowns: Unknowns:
8 points 18 dof 8 points 18 dof

Constraints:
12 distances
5 coplanarity

Constraints:
12 distances
6 coplanarity

18 dor 17 dor

University of Strasbourg, ICube, UMR 7357
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Global Homotopy

Regularity

Example: the hexahedron problem
Build an hexahedron, knowing length of its 12 edges.

For allmost all values of parameters, its solutions are:
e isolated points
e one dimensional manifolds

Problem 2:  Build 8 points in a plane, knowing 12 distances
pairwise.

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Regularity

Example: the hexahedron problem
Build an hexahedron, knowing length of its 12 edges.

For allmost all values of parameters, its solutions are:
e isolated points
e one dimensional manifolds

Homotopy function H(X, t): For allmost all values of parameters,
{(X,t)|H(X,t) = 0} admits critical points.

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Regularity

Example: the hexahedron problem
Build an hexahedron, knowing length of its 12 edges.

For allmost all values of parameters, its solutions are:
e isolated points
e one dimensional manifolds

Homotopy function H(X, t): For allmost all values of parameters,
{(X,t)|H(X,t) = 0} admits critical points.

Result:
Let F(X,A) be the numerical function of a well constrained GCS.
If i, f; depends of a parameter a; € R, F(X, (1 — t)ask + taso) is
regular for allmost all a5, € R", ag, € R".

[LW93] TY Li and Xiao Shen Wang.
Solving real polynomial systems with real homotopies.
mathematics of computation, 60(202):669-680, 1993.
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Global Homotopy

Regularity

Parameterization of boolean constraints

Idea: Substitute boolean constraints by constraints of parameters
not nul when t ¢ [0, 1] to apply previous result.

In practice:

det(P()Pl, ngé, POP3) — det(P()Pl, POP2, POP3) — a

Heuristic result: For allmost all such interpolation functions C*°, H
does not admit critical points on R"” x (R \ [0, 1]).

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Global Homotopy

Regularity

Example: the hexahedron problem

1.4

x16

émi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 73!



Constructive Geometry
11/ 14

Main contributions

Usage of constructive geometry

o finding other solutions

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)
e by intersecting
e knowing parameters values

Parametres:
Po Pl Lo, ho hi,hy ..., hg, hig, h11
Inconnues:

;51,5 ,P1, ..., So, 510, 511, Ps
Termes: Pgy, hg

Plo, Lo
S1 = sphere(Py, hy1)
Sy = sphere(Ps, hy)
A Py = interPSS(Ply, S1, S2)

0 Sy = sphere(Py, hg)
0 S10 = sphere(P1, hg)

0 S11 = sphere(Ps, hig)

Ps = interSSS(So, S10, S11)

émi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 73!



Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)

e by intersecting
e knowing parameters values

Parametres:

Po Pl Lo, hg  hi,hy s, hg, h1g, h11
Inconnues:

So s P2 s+ 9,510, 511, Ps

Termes: Sy = sphere(Py, hg)
Py = interPLS(Ply, Lo, Sop)
Po, hy
P>, hy
Ply

Sy = sphere(Py, hg)

S10 = sphere(P1, hg)

S11 = sphere(Ps, hig)

Ps = interSSS(So, S10, S11)
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)

e by intersecting
e knowing parameters values

Parametres:

Po s Plo , Lo, ho s h1yho ooy ho, i, b1t
Inconnues:

So,P2,51,% P, ..,

Termes: Sy = sphere(Py, hg)

Py = interPLS(Ply, Lo, Sop)

S1 = sphere(Py, h1)

Sy = sphere(Ps, hy)

Py = interPSS(Ply, S1, S2)

Po, hg
Py, hg
Py, hio
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)

e by intersecting geometric locii
e knowing parameters values
e making choices

Py.Lg. Plg,Sg

P,.8,.S, P,.S,.S,

P....
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)

e by intersecting geometric locii
e knowing parameters values
e making choices

Py.Lg. Plg,Sg

P,.S[.S, P,.5).5,

P....
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)

e by intersecting geometric locii
e knowing parameters values
e making choices

Py.Lg. Plg,Sg

P,.S[.S, P,.5).5,

P....
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)
o Obtained by
e the Locus Intersection Method (LIM)
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)
o Obtained by
e the Locus Intersection Method (LIM)
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)
o Obtained by

e the Locus Intersection Method (LIM)
e or reparameterization
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Constructive Geometry

Building new sketches

Construction plan

e Constructs figures (geometric objects)
o Obtained by

e the Locus Intersection Method (LIM)
e or reparameterization

Idea: Using a construction plan obtained by reparameterization to
build new sketches.

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357



Constructive Geometry
RESTS

Some numerical results

Table: Execution times3.

HOM4PS-2.0: Exhaustive Research:

Disulfide:
nb solutions 18 13

time 6129s 108s
Hexahedron:
nb solutions 16 16

time 12800s 136s
Icosahedron:
nb solutions 4 308°

time - -

30n an Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
*computation interrupted after a week
Scomputation interrupted after 8 hours
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Constructive Geometry
RESTS

Some numerical results

Table: Execution times3.
HOM4PS-2.0: Exhaustive Research:

Disulfide:

nb solutions 18 13
time 6129s 108s

Hexahedron:

nb solutions 16 16
time 12800s 136s

Icosahedron:

nb solutions A 308°
time - -

Idea: semi-automatic research of new solutions

30n an Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
*computation interrupted after a week
Scomputation interrupted after 8 hours
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Conclusion
14/ 14

Conclusion: homotopy method led by geometry to solve GCS:
o the sketch is used to determine the initial system
e several solutions are found

e a construction plan obtained by reparameterization constructs
new sketches

Prospects:
e characterize the geometry of homotopy paths

e detecting geometric causes of heterogeneous solution sets
dimension

e semi-automatic research of new solutions

Rémi Imbach, Pascal Schreck and Pascal Mathis University of Strasbourg, ICube, UMR 7357
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