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Curve defined as the intersection of two algebraic surfaces:

C :

{
p(x , y , z) = 0
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, (x , y , z) ∈ R3
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Curve defined as the intersection of two algebraic surfaces:

C :

{
p(x , y , z) = 0
pz(x , y , z) = 0

, (x , y , z) ∈ R3, pz = ∂p
∂z

Projection in the plane: B = π(x ,y)(C)
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Computing topology of a real plane curve B

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

B = {(x , y) ∈ R2|f (x , y) = 0}
Singularities: {(x , y) ∈ R2|f (x , y) = fx(x , y) = fy (x , y) = 0}

• Path tracking methods fail near singularities

• Symbolic methods

• CAD requires : computing with algebraic numbers
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A general framework

0 Restrict to a compact B0

1 Isolate in boxes:
• boundary points
• x-critical points
• singularities

2 Compute topology around
singularities

3 Connect boxes

ISOTOP

Gröbner basis
and RUR


Sweeping
algorithm



Introduction Isolating singularities Enclosing C Results

Computing topology of planar curves 2/ 13

Computing topology of a real plane curve B
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Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

B = {(x , y) ∈ R2|f (x , y) = 0}
Singularities: {(x , y) ∈ R2|f (x , y) = fx(x , y) = fy (x , y) = 0}

• Path tracking methods fail near singularities

• Symbolic methods

• CAD requires : computing with algebraic numbers

A general framework

0 Restrict to a compact B0

1 Isolate in boxes:
• boundary points
• x-critical points
• singularities

2 Compute topology around
singularities

3 Connect boxes

ISOTOP
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When B is a projection or an apparent contour

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

A general framework

0 Restrict to a compact B0

1 Isolate in boxes:
• boundary points
• x-critical points
• singularities

2 Compute topology around
singularities

3 Connect boxes

Enclosing C in a sequence of boxes:

• 1-dim solver

• 1 point on each C.C.: 0-dim solver

Geometric characterization of nodes and cusps:

• 4D square system

• 0-dim solver

• Restriction of the solving domain

Certified numerical tools:

• 0-dim solver: subdivision

• 1-dim solver: path tracker
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Isolating singularities

of an apparent contour
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B = {(x , y) ∈ R2|r(x , y) = 0},

Singularities of B are the solutions of:
r(x , y) = 0
∂r
∂x (x , y) = 0
∂r
∂y (x , y) = 0

s.t.
∂r

∂y
(x , y) = 0

. . . that is over-determined.

p, degree 6, bit-size 8, 84 monomials
r , degree 30, bit-size 111, 496 monomials
∂r
∂x ,

∂r
∂y , degree 29, bit-size 115, 465 monomials

s11, s10, degree 20, bit-size 89, 231 monomials
s22, degree 12, bit-size 65, 91 monomials

degree of p 5 6 7 8 9

time with RSCube* 3.1s 32s 254s 1898s 9346s
* F.Rouillier

[IMP15] Rémi Imbach, Guillaume Moroz, and Marc Pouget.
Numeric certified algorithm for the topology of resultant and
discriminant curves.
Research Report RR-8653, Inria, April 2015.
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[IMP15] Rémi Imbach, Guillaume Moroz, and Marc Pouget.
Numeric certified algorithm for the topology of resultant and
discriminant curves.
Research Report RR-8653, Inria, April 2015.



Introduction Isolating singularities Enclosing C Results

Ball system 5/ 13

Isolating singularities . . . : the ball system

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

B = {(x , y) ∈ R2|∃z ∈ R s.t. (x , y , z) ∈ C}

Singularities of B are the regular solutions of:

(S4)


1
2 (p(x , y , c +

√
r) + p(x , y , c −

√
r)) = 0

1
2
√
r
(p(x , y , c +

√
r) − p(x , y , c −

√
r)) = 0

1
2 (pz(x , y , c +

√
r) + pz(x , y , c −

√
r)) = 0

1
2
√
r
(pz(x , y , c +

√
r) − pz(x , y , c −

√
r)) = 0

Assumption (A2): Singularities of B are nodes and cusps
Let (x , y) be:

• a node: (x , y , z1), (x , y , z2) ∈ C, with z1 6= z2

c : center of z1, z2, r = ‖cz1‖2,

z1 = c −
√
r , z2 = c +

√
r

• a cusp: (x , y , z1), (x , y , z2) ∈ C, with z1 = z2

c : center of z1, z2, r = ‖cz1‖2,

z1 = c −
√
r , z2 = c +

√
r

• equations of (S4) are polynomials

• 4 equations in 4 unknowns

• isolating singularities in B0 ⊂ R2 ⇔ solving (SB) within B0×R×R+

c : center of z1, z2

r = ‖cz1‖2
2
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Certified numerical tools: 0-dim solver

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

F : Rn → Rn, F polynomial,

X0 a compact of Rn

• find zeros of F : find {X ∈ Rn|F (X ) = 0}

 {X ∈ Rn|‖F (X )‖ ≤ ε}
• Isolate zeros of F in boxes {X1, . . . ,Xn} such that

• each Xk contains a unique zero of F
• each zero of F in X0 is in a unique box Xk

Interval Arithmetic: x ⊂ R

,X ⊂ Rn ,F (X) ⊇ {F (X )|X ∈ X}

• multi-dimensional extension of interval : box X ⊂ Rn

• interval arithmetic operators

• interval evaluation of F : Rn → Rn : F (X) ⊇ {F (X )|X ∈ X}

Krawczik criterion: KF : X ⊂ Rn 7→ KF (X) ⊂ Rn

KF (X) ⊂ Int(X)⇒ KF (X) contains a unique zero of F

consequence of the Brouwer fixed point theorem.

Subdivision method:

• terminates with a correct result when
• F = 0 has only regular solutions,
• working at arbitrary precision.

• can be extended to unbounded initial box X0

• its cost grows exponentially with n

2F (x,y)=0

1F (x,y)=0 ����

��

�
�
�
�

��
��
��
��

��

�
�
�
�

[Neu90] Arnold Neumaier.
Interval methods for systems of equations, volume 37.
Cambridge university press, 1990.
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X0 a compact of Rn

• find zeros of F : find {X ∈ Rn|F (X ) = 0}  {X ∈ Rn|‖F (X )‖ ≤ ε}

• Isolate zeros of F in boxes {X1, . . . ,Xn} such that

• each Xk contains a unique zero of F
• each zero of F in X0 is in a unique box Xk

Interval Arithmetic: x ⊂ R

,X ⊂ Rn ,F (X) ⊇ {F (X )|X ∈ X}

• multi-dimensional extension of interval : box X ⊂ Rn

• interval arithmetic operators

• interval evaluation of F : Rn → Rn : F (X) ⊇ {F (X )|X ∈ X}

Krawczik criterion: KF : X ⊂ Rn 7→ KF (X) ⊂ Rn

KF (X) ⊂ Int(X)⇒ KF (X) contains a unique zero of F

consequence of the Brouwer fixed point theorem.

Subdivision method:

• terminates with a correct result when
• F = 0 has only regular solutions,
• working at arbitrary precision.

• can be extended to unbounded initial box X0

• its cost grows exponentially with n

2F (x,y)=0

1F (x,y)=0 ����
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Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

F : Rn → Rn, F polynomial, X0 a compact of Rn

• find zeros of F : find {X ∈ Rn|F (X ) = 0}

 {X ∈ Rn|‖F (X )‖ ≤ ε}

• Isolate zeros of F in boxes {X1, . . . ,Xn} such that
• each Xk contains a unique zero of F
• each zero of F in X0 is in a unique box Xk

Interval Arithmetic: x ⊂ R ,X ⊂ Rn ,F (X) ⊇ {F (X )|X ∈ X}
• multi-dimensional extension of interval : box X ⊂ Rn

• interval arithmetic operators

• interval evaluation of F : Rn → Rn : F (X) ⊇ {F (X )|X ∈ X}

Krawczik criterion: KF : X ⊂ Rn 7→ KF (X) ⊂ Rn

KF (X) ⊂ Int(X)⇒ KF (X) contains a unique zero of F

consequence of the Brouwer fixed point theorem.

Subdivision method:

• terminates with a correct result when
• F = 0 has only regular solutions,
• working at arbitrary precision.

• can be extended to unbounded initial box X0

• its cost grows exponentially with n

[Neu90] Arnold Neumaier.
Interval methods for systems of equations, volume 37.
Cambridge university press, 1990.



Introduction Isolating singularities Enclosing C Results

Certified numerical tools 6/ 13

Certified numerical tools: 0-dim solver
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F : Rn → Rn, F polynomial, X0 a compact of Rn

• find zeros of F : find {X ∈ Rn|F (X ) = 0}

 {X ∈ Rn|‖F (X )‖ ≤ ε}

• Isolate zeros of F in boxes {X1, . . . ,Xn} such that
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Interval Arithmetic: x ⊂ R ,X ⊂ Rn ,F (X) ⊇ {F (X )|X ∈ X}

• multi-dimensional extension of interval : box X ⊂ Rn

• interval arithmetic operators

• interval evaluation of F : Rn → Rn : F (X) ⊇ {F (X )|X ∈ X}

Krawczik criterion: KF : X ⊂ Rn 7→ KF (X) ⊂ Rn

KF (X) ⊂ Int(X)⇒ KF (X) contains a unique zero of F

consequence of the Brouwer fixed point theorem.

Subdivision method:
Input: F : Rn → Rn, X0 box of Rn

Output: A list R of boxes containing solutions in X0 of F = 0
L := {X0}
Repeat:

1.

X := L.pop

2.

If 0 ∈ F (X) then

2.1.

If KF (X) ⊂ Int(X) then

2.1.1.

insert X in R

2.2.

Else If KF (X) ∩ X 6= ∅ then

2.2.1.

bisect X and insert its sub-boxes in L

2.3.

End if

3.

End if
Until L = ∅
Return R

• terminates with a correct result when
• F = 0 has only regular solutions,
• working at arbitrary precision.

• can be extended to unbounded initial box X0

• its cost grows exponentially with n
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Certified numerical isolation of singularities

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Datas: Random dense polynomials of degree d , bit-size 8

Subdivision solver: home made in C++, with boost interval library

• evaluation of polynomials with horner scheme → quick

• evaluation of polynomials at order 2 → sharp

Numerical results: Subdivision solving within [−1, 1]× [−1, 1]

Sub-resultant system S2 Ball system S4

d t t

5 0.05 24.8
6 0.50 8.40
7 4.44 43.8
8 37.9 70.2
9 23.1 45.6

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU

L5640 @ 2.27GHz machine.
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Restriction of the solving domain

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Enclose C: find a sequence {Ck}1≤k≤l such that

• C ⊂
⋃

k Ck ,

• in each Ck , C ∩ Ck is diffeomorphic to a close segment,

• each Ck has width less than η.

→ Enclose B: each B ∈ B is in a Bk = π(x ,y)(Ck)

→ Enclose singularities:

• each cusp is in a Bk

• each node is in a Bij = Bi ∩ Bj

→ Enclose solutions of the ball system:
Solutions of the ball system are in

⋃
k Dk ∪

⋃
i ,j Dij
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Enclose C: find a sequence {Ck}1≤k≤l Ck = (xk , yk , zk)

→ Enclose B: each B ∈ B is in a Bk = π(x ,y)(Ck) Bk = (xk , yk)
→ Enclose singularities:

• each cusp is in a Bk Dk = (xk , yk , zk , [0, (
w(zk )

2 )2])

• each node is in a Bij = Bi ∩ Bj Dij = (xij , yij ,
(zi+zj )

2 , [0, (
(zi−zj )

2 )2])

→ Enclose solutions of the ball system:
Solutions of the ball system are in

⋃
k Dk ∪

⋃
i ,j Dij
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Certified numerical tools: path tracker

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

F : Rn → Rn−1, X0 a box of Rn

X = {X ∈ X0|F (X ) = 0} is a smooth curve of Rn

X 1, . . . ,Xm: connected components of X

Certified path-tracker:
Input: F : Rn → Rn−1, X0 box of Rn, η ∈ R+

∗

Input:

An initial box X ∈ X i

Output: a sequence of boxes {Xk}1≤k≤l enclosing X i .

[MGGJ13] Benjamin Martin, Alexandre Goldsztejn, Laurent Granvilliers, and Christophe Jermann.
Certified parallelotope continuation for one-manifolds.
SIAM Journal on Numerical Analysis, 51(6):3373–3401, 2013.
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Enclosing C

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

F : R3 → R2, B0 a box of R2

C = {C ∈ B0 × R|F (X ) = 0} is a smooth curve of R3

C1, . . . , Cm: connected components of C
Assumption (A3): C is compact over B0

(A3) holds for generic polynomials p, q

Finding one point on each connected component
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Finding one point on each connected component

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Assumption (A3): C is compact over B0

Lemma: If (A3) holds, Ck is

• either diffeomorphic to [0, 1]
⇒ has 2 intersections with ∂B0 × R

• or diffeomorphic to a circle
⇒ has at least two x-critical points
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Assumption (A3): C is compact over B0

Lemma: If (A3) holds, Ck is

• either diffeomorphic to [0, 1]
⇒ has 2 intersections with ∂B0 × R

• or diffeomorphic to a circle
⇒ has at least two x-critical points

C ∩ (∂B0 × R) are the solutions
of the 4 systems:{

p(x = a, y , z) = 0
q(x = a, y , z) = 0{
p(x , y = b, z) = 0
q(x , y = b, z) = 0

where a ∈ {xinf , xsup},

where

b ∈ {yinf , ysup}
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Finding one point on each connected component

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Assumption (A3): C is compact over B0

Lemma: If (A3) holds, Ck is

• either diffeomorphic to [0, 1]
⇒ has 2 intersections with ∂B0 × R

• or diffeomorphic to a circle
⇒ has at least two x-critical points

x-critical points of C are the
solutions of the system:

p(x , y , z) = 0
q(x , y , z) = 0∣∣∣∣ py pz

qy qz

∣∣∣∣ (x , y , z) = 0
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Certified numerical isolation of singularities

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

Path tracker: prototype in python/cython

Numerical results: solving within [−1, 1]× [−1, 1]

Sub-resultant system S2 Ball system S4 S4 with curve tracking
d t t t

5 0.05 24.8 1.25
6 0.50 8.40 2.36
7 4.44 43.8 4.13
8 37.9 70.2 5.91
9 23.1 45.6 5.30

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU

L5640 @ 2.27GHz machine.
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Perspectives

Rémi Imbach, Guillaume Moroz and Marc Pouget INRIA - VEGAS

• Using the enclosure of C to recover the topology of B
• Projections of curves of Rn, with n > 3

Questions?
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