2023
|
pwpoly
is now released as a C library and soon available as a package for python and in
Maple 2024.
It implements our fast root finding algorithm described in [IM23].
|
2023
|
befft ,
a C library for radix-2 fft in double precision with bounded error is available
|
2023
|
Our implementation of the complex root approximation algorithm of [Moroz21]
is now available througth
the fsolve
command
(and RootFinding:-Isolate , HR method)
in Maple 2023.
|
Aug. 2019
|
Ccluster.jl now implements the root clustering algorithm for triangular algebraic systems of [IPY19].
|
June 2018
|
Ccluster is an implementation of a neer optimal complex root clustering algorithm (see [BSS+16]). It is available either as a stand-alone program, or in the package
Ccluster.jl
for the programming language
Julia
|
March 2016
|
subdivision_solver is a solver for square systems of polynomial equations using exhaustive search in an initial bounded real domain given as a box (i.e. a vector of intervals). It is specifically designed to handle systems of large dense polynomials and uses adaptive multi-precision arithmetic to stay robust to hard cases.
subdivision_solver is proposed as a package for the mathematical software SageMath .
|
[IM23]
|
Rémi Imbach and Guillaume Moroz.
Fast evaluation and root finding for polynomials with floating-point coefficients.
In Proceedings of the 48th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’23, page 325-334, New York, NY, USA,
2023. Association for Computing Machinery.
[ bib |
http ]
|
[Moroz21]
|
Guillaume Moroz.
New data structure for univariate polynomial approximation and applications to root isolation, numerical multipoint evaluation, and other problems.
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)
[ DOI ]
|
[BSS+16]
|
Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu and Chee Yap.
Complexity Analysis of Root Clustering for a Complex Polynomial.
Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '16
[ DOI ]
|
|
International Journals |
[IPY21]
|
Rémi Imbach, Marc Pouget, and Chee Yap.
Clustering complex zeros of triangular systems of polynomials.
Mathematics in Computer Science, 15(2):271--292, 2021.
[ bib |
http ]
|
[IMP18]
|
Rémi Imbach, Guillaume Moroz, and Marc Pouget.
Reliable location with respect to the projection of a smooth space
curve.
Reliable Computing, 26:13 -- 55, 2018.
[ bib |
http ]
|
[IMP17]
|
Rémi Imbach, Guillaume Moroz, and Marc Pouget.
A certified numerical algorithm for the topology of resultant and
discriminant curves.
Journal of Symbolic Computation, 80, Part 2:285 -- 306, 2017.
[ bib |
DOI |
http ]
|
[IMS17]
|
Rémi Imbach, Pascal Mathis, and Pascal Schreck.
A robust and efficient method for solving point distance problems by
homotopy.
Mathematical Programming: Series A and B, 163(1-2):115--144,
2017.
[ bib |
http ]
|
[ISM14]
|
Rémi Imbach, Pascal Schreck, and Pascal Mathis.
Leading a continuation method by geometry for solving geometric
constraints.
Computer-Aided Design, 46:138--147, 2014.
[ bib |
.pdf ]
|
|
|
|
International Conferences proceedings |
[IM23]
|
Rémi Imbach and Guillaume Moroz.
Fast evaluation and root finding for polynomials with floating-point coefficients.
In Proceedings of the 48th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’23, page 325-334, New York, NY, USA,
2023. Association for Computing Machinery.
[ bib |
http ]
|
[IP22]
|
Rémi Imbach and Victor Y Pan.
Accelerated subdivision for clustering roots of polynomials given by
evaluation oracles.
In Computer Algebra in Scientific Computing: 24th International
Workshop, CASC 2022, Gebze, Turkey, August 22--26, 2022, Proceedings, pages
143--164. Springer, 2022.
[ bib | preprint ]
|
[IP21]
|
Rémi Imbach and Victor Y Pan.
Root radii and subdivision for polynomial root-finding.
In Computer Algebra in Scientific Computing: 23rd International
Workshop, CASC 2021, Sochi, Russia, September 13--17, 2021, Proceedings 23,
pages 136--156. Springer, 2021.
[ bib | preprint ]
|
[IP20]
|
Rémi Imbach and Victor Y. Pan.
New progress in univariate polynomial root finding.
In Proceedings of the 45th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’20, page 249–256, New York, NY, USA,
2020. Association for Computing Machinery.
[ bib |
DOI |
http ]
|
[IP19]
|
Rémi Imbach and Victor Y. Pan.
New practical advances in polynomial root clustering.
In Daniel Slamanig, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos,
editors, Mathematical Aspects of Computer and Information Sciences,
pages 122--137, Cham, 2020. Springer International Publishing.
[ bib ]
|
[IPY+19a]
|
Rémi Imbach, Victor Y. Pan, Chee Yap, Ilias S. Kotsireas, and Vitaly
Zaderman.
Root-finding with implicit deflation.
In Matthew England, Wolfram Koepf, Timur M. Sadykov, Werner M.
Seiler, and Evgenii V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing, pages 236--245, Cham, 2019. Springer International
Publishing.
[ bib |
http ]
|
[IPY18]
|
Rémi Imbach, Victor Y. Pan, and Chee Yap.
Implementation of a near-optimal complex root clustering algorithm.
In James H. Davenport, Manuel Kauers, George Labahn, and Josef Urban,
editors, Mathematical Software -- ICMS 2018, pages 235--244, Cham,
2018. Springer International Publishing.
[ bib |
DOI |
http ]
|
[IMP16]
|
Rémi Imbach, Guillaume Moroz, and Marc Pouget.
Numeric and Certified Isolation of the Singularities of the
Projection of a Smooth Space Curve.
In Ilias S. Kotsireas, Siegfried M. Rump, and Chee K. Yap, editors,
Mathematical Aspects of Computer and Information Sciences: 6th
International Conference, MACIS 2015, Berlin, Germany, November 11-13, 2015,
Revised Selected Papers, pages 78--92, Cham, 2016. Springer International
Publishing.
[ bib |
DOI |
http ]
|
[MSI12]
|
Pascal Mathis, Pascal Schreck, and Rémi Imbach.
Decomposition of geometrical constraint systems with
reparameterization.
In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, pages 102--108. ACM, 2012.
[ bib |
http ]
|
[IMS11]
|
Rémi Imbach, Pascal Mathis, and Pascal Schreck.
Tracking method for reparametrized geometrical constraint systems.
In 2011 13th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 31--38. IEEE, 2011.
[ bib |
.pdf ]
|
|
|
|
|
|
Technical Report |
[Imb16]
|
Rémi Imbach.
A Subdivision Solver for Systems of Large Dense Polynomials.
Technical Report RT-0476, INRIA Nancy, March 2016.
[ bib |
http |
.pdf ]
|
|
|
|
French Workshop proceedings |
[IMP15]
|
Rémi Imbach, Guillaume Moroz, and Marc Pouget.
A certified numerical approach to describe the topology of projected
curves.
In Journées de l'Association Française d'Informatique
Graphique, 2015.
[ bib |
.pdf ]
|
[IMS12]
|
Rémi Imbach, Pascal Mathis, and Pascal Schreck.
Une approche par décomposition et reparamétrisation de
systèmes de contraintes géométriques.
In Journées du Groupe de Travail en Modélisation
Géométrique, 2012.
[ bib |
.pdf ]
|
|
|
|
PhD Thesis |
[Imb13]
|
Rémi Imbach.
Résolution de contraintes géométriques en guidant
une méthode homotopique par la géométrie.
PhD thesis, Université de Strasbourg, 2013.
[ bib |
.pdf ]
|
|
Seminars |
Jan. 2021
|
Complex Roots Clustering.
Joint Joint PolSys SpecFun Seminar,
Sciences Sorbonne Université, Paris
[ http |
pdf ]
|
Nov. 2019
|
Practical Advances in Complex Root Clustering.
Joint CUNY Graduate Center-Courant
Seminar in Symbolic-Numeric Computing,
Courant Institute of Mathematical Sciences, New York
[ http |
pdf ]
|
Jan. 2019
|
Complex Roots/Solutions Clustering Algorithms.
OGRE team seminar, Nantes, France
|
May 2018
|
Numerical and certified computation of the topology of projected curves.
Joint CUNY Graduate Center-Courant
Seminar in Symbolic-Numeric Computing,
CUNY Graduate Center, New York
[ http |
pdf ]
|
Jul. 2017
|
Certified numerical tools for computing the topology of projected curves.
Algebra, Geometry und Computer Algebra seminars,
Technische Universit\"at Kaiserslautern Germany
[ http ]
|
Sep. 2016
|
Certified numerical tools for computing the topology of projected curves.
AriC seminar, Lyon, France
[ http |
pdf ]
|
|
|
|
International Conferences |
Jul. 2023
|
Fast evaluation and root finding for polynomials with floating-point coefficients.
ISSAC '23 (International Symposium on Symbolic
and Algebraic Computation), Tromso, Norway.
[.pdf ]
|
Jul. 2020
|
New progress in univariate polynomial root finding.
ISSAC '20 (International Symposium on Symbolic
and Algebraic Computation), Online.
[.pdf ]
|
Aug. 2019
|
Clustering Complex Zeros of Triangular Systems of Polynomials.
CASC 2019 (Computer Algebra in Scientific Computing), Moscow, Russia.
[.pdf ]
|
July 2018
|
Implementation of a near-optimal complex root clustering algorithm
.
ICMS 2018 (International Congress of Mathematical Software), Notre-Dame, USA.
[.pdf ]
|
June 2016
|
Interval tools for computing the topology of projected curves.
SWIM 2016 (Summer Workshop on Interval Methods) Lyon, France
[.pdf ]
|
Nov. 2015
|
Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve.
MACIS 2015 (Sixth International Conference on Mathematical Aspects of Computer and Information Sciences), Berlin, Germany
[.pdf ]
|
Nov. 2013
|
Leading a continuation method by geometry for solving geometric
constraints.
GD/SPM 13 (Geometric and Physical Modeling), Denver, Colorado, USA
[.pdf ]
|
Sept. 2011
|
Tracking method for reparametrized geometrical constraint
systems.
SYNASC 11 (Symposium on Symbolic and Numeric Algorithms for Scientific Computing), Timisoara, Roumanie
|
|
|
|
National Workshops |
Nov. 2015
|
A Certified Numerical Approach to Describe the Topology of Projected Curves.
Journées de l'Association Française d'Informatique Graphique 2015, Lyon
[.pdf ]
|
Oct. 2015
|
Numeric certified algorithm for computing the topology of projections of real spatial curves.
Journées Informatique et Géométrie 2015, ESIEE Parie, Marne-la-Vallée
[.pdf ]
|
Jun. 2014
|
Une méthode de continuation guidée par la géométrie pour résoudre des systémes de contraintes géométriques.
INRIA Nancy - Grand Est, France
[.pdf ]
|
Mar. 2012
|
Une approche par décomposition et reparamétrisation de
systèmes de contraintes géométriques.
Journées du Groupe de Travail en Modélisation
Géométrique, Strasbourg, France
|
|
|
|
PHD Defense |
Oct. 2013
|
Résolution de contraintes géométriques en guidant
une méthode homotopique par la géométrie.
Université de Strasbourg, France
[.pdf ]
|